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Abstract One-dimensional system of Brownian motions called Dyson’s model is the par-
ticle system with long-range repulsive forces acting between any pair of particles, where
the strength of force is B/2 times the inverse of particle distance. When g = 2, it is re-
alized as the Brownian motions in one dimension conditioned never to collide with each
other. For any initial configuration, it is proved that Dyson’s model with 8 =2 and N par-
ticles, X(t) = (X1(t),..., Xny(@®)),t € [0,00),2 < N < 00, is determinantal in the sense
that any multitime correlation function is given by a determinant with a continuous ker-
nel. The Airy function Ai(z) is an entire function with zeros all located on the nega-
tive part of the real axis R. We consider Dyson’s model with 8 = 2 starting from the
first N zeros of Ai(z), 0 > a; > --- > ay, N > 2. In order to properly control the ef-
fect of such initial confinement of particles in the negative region of R, we put the drift
term to each Brownian motion, which increases in time as a parabolic function: Y;(t) =
X;(t) 4+ 1*/4 + {d, + Z?’:l(l/a()}l, 1 <j < N, where d; = Ai'(0)/Ai(0). We show that,
as the N — oo limit of Y (¢) = (Y (¢), ..., Yn(2)),t € [0, 00), we obtain an infinite particle
system, which is the relaxation process from the configuration, in which every zero of Ai(z)
on the negative R is occupied by one particle, to the stationary state ;. The stationary
state [1a; is the determinantal point process with the Airy kernel, which is spatially inhomo-
geneous on R and in which the Tracy-Widom distribution describes the rightmost particle
position.
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1 Introduction

1.1 Dyson’s Model: One-Dimensional Brownian Particle System Interacting through Pair
Force 1/x

To understand the time-evolution of distributions of interacting particle systems on a large
space-time scale (thermodynamic and hydrodynamic limits) is one of the main topics of
statistical physics. If the interactions among particles are short ranged, the standard theory
is useful. If they are long ranged, however, general theory has not yet been established and
thus detailed study of model systems is required [26].

In the present paper, we consider Brownian particles in one dimension with long-ranged
repulsive forces acting between any pair of particles, where the strength of force is exactly
equal to 1/x when the particle distance is x. If the number of particles is finite N < oo, the
system is described by E(t) = Z?’:l 3x;» 2 < N <00, where X (1) = (X (t), ..., Xn(1))
satisfies the following system of stochastic differential equations (SDEs);

1

dX;(t)=dB;(t)+ Z md

1<k<N
k#j

t, 1<j<N,tel0,00) (L.1)

with independent one-dimensional standard Brownian motions B; (), 1 < j < N. The SDEs
obtained by replacing the 1/x force in (1.1) by §/(2x) with a parameter 8 > 0 were intro-
duced by Dyson [4] to understand the statistics of eigenvalues of Hermitian random matrices
as particle distributions of interacting Brownian motions in R. Corresponding to the special
values 8 = 1,2 and 4, Hermitian random matrices are in the three statistical ensembles with
different symmetries, called the Gaussian orthogonal ensemble (GOE), the Gaussian unitary
ensemble (GUE), and the Gaussian symplectic ensemble (GSE), respectively [5]. In partic-
ular for B = 2, that is the case of (1.1), if the eigenvalue distribution of N x N Hermitian
random matrices in the GUE with variance o is denoted by "%, we can show

Jim 2 () = (), (1.2)

where g, denotes the determinantal (Fermion) point process [23, 24] with the so-called
sine kernel

. .
Kan(0) = — / dk eV=TH = % xeR. (1.3)
|k|<m

That is, pg, is a spatially homogeneous particle distribution, in which the particle density is
given by pgn = lim,_o Kn(x) = 1 and any N;-point correlation function pg, (X y,), Xy, =
(X1,...,xN5) € RM, N, > 2, is given by a determinant of an N; x N real symmetric matrix;

psin(le) = det [Ksin(xj _xk)]-
1<j.k=N;

Based on this fact known in the random matrix theory [17], Spohn [25] studied the equilib-
rium dynamics obtained in the infinite-particle limit N — oo of Dyson’s model (1.1). Since
the 1/x force is not summable, in the infinite-particle limit N — oo the sum in (1.1) should
be regarded as an improper sum, in the sense that for X;(#) € [-L, L] the summation is
restricted to k’s such that X, () € [—L, L] and then the limit L — oo is taken. It is expected
that the dynamics with an infinite number of particles can exist only for initial configurations
having the same asymptotic density to the right and left [13, 25].
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Zeros of Airy Function and Relaxation Process 1179

The problem, which we address in the present paper, is how we can control Dyson’s
model with an infinite number of particles starting from asymmetric initial configurations.
The motivation is again coming from the random matrix theory as follows. Consider the
Airy function [1, 30]

1 :
Ai@)= - / dk eV ~IGk+E/3) (1.4)
R

It is a solution of Airy’s equation f”(z) — zf (z) = 0 with the asymptotics on the real axis R:

Ai(x) ~ _ exp —gx3/2
NG 3 ’

2
Ai(—x) ~ Zx2_ %) in x — +oo. (1.5)

1
In the GUE random matrix theory, the following scaling limit has been extensively studied:
Jim S QN ) = (), (1.6)

where (14 is the determinantal point process such that the correlation kernel is given by [8,
28],

Kai(ylx) = / du Ai(u + x)Ai(u + y)
0

Ai(x)Ai’(yE:IVAi’mAi(y)’ x#yeR,
= 7 (1.7)
(AT (x))? —x(Ai(x))?, x=yeR.

It is another infinite-particle limit different from (1.2) and is called the soft-edge scaling
limit, since x2 /2t ~ (2N?*/3)?/(2N'/3) = 2N marks the right edge of semicircle-shaped pro-
file of the GUE eigenvalue distribution (see, for example, [12]). The particle distribution

Wi With the Airy kernel (1.7) is highly asymmetric: As a matter of fact, the particle density
pai(x) = Kaj(x|x) decays rapidly to zero as x — oo, but it diverges

1
pai(x) >~ —(=x)'? > 00 asx — —o0. (1.8)
T

Let R be the position of the rightmost particle on R in ;. Then its distribution is given by
the celebrated Tracy-Widom distribution [28]

1ai(R < x) = exp [— /w(y - X)(q(y))zdy] ,
where ¢ (x) is the unique solution of the Painlevé II equation
q"=xq+24°
satisfying the boundary condition ¢ (x) ~ Ai(x) in x — oo. Priahofer and Spohn [22] and
Johansson [11] studied the equilibrium fluctuation of this rightmost particle and called it

the Airy process. Tracy and Widom derived a system of partial differential equations, which
govern the Airy process [29]. See also [2, 3]. How can we realize p,; as the equilibrium
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state of Brownian infinite-particle system interacting through pair force 1/x? The initial
configurations should be asymmetric, but what kinds of conditions should be satisfied by
them? How should we modify the SDEs of original Dyson’s model (1.1), when we provide
finite-particle approximations for such asymmetric infinite particle systems?

In the present paper, as an explicit answer to the above questions, we will present a
relaxation process with an infinite number of particles converging to the stationary state pta;
in t — oo. Its initial configuration is given by

Ea()=) 8.()=) 84,(). (1.9)
=1

acA J

in which every zero of the Airy function (1.4) is occupied by one particle. This special
choice of the initial configuration is due to the fact that the zeros of the Airy function are
located only on the negative part of the real axis R,

A=A ) = a;, j €N : M) =0,0> a1 > @ > ], (1.10)

with the values [1] a; = —2.33...,a, = —4.08...,a3 = —5.52...,a4 = —6.78..., and
that they admit the asymptotics [1, 30]

37 \*?
a_f:—<7> J¥? in j — oo. (1.11)

Then the average density of zeros of the Airy function around x, denoted by p,;-1(,(x),
behaves as

1
Pai-10)®) = —(—=x)"/* > 00 asx — —o0,
T

which coincides with (1.8). The approximation of our process with a finite number of parti-
cles N < oo is given by B4 (t) = Y1, 8y, with
2
Yj(t)=Xj(t)+Z+DANt, I<j=N,tel0,00), (1.12)

associated with the solution X (#) = (X;(¢), ..., Xy(¢)) of Dyson’s model (1.1), where
A
DAN:d1+Za—. (1.13)
¢
—
Here d; = Ai'(0)/Ai(0) and Ay ={0 > a; > --- > ay} C A is the sequence of the first

N zeros of the Airy function. In other words, Y (¢) = (Y1 (2), Y2(¢), ..., Yn(2)) satisfies the
following SDEs;

t dt
de(t):dBj(t)—l-(E—l—DAN)dt—Fl;Nm
k#j
=dB;()+ Y <;+i)d1+<£+dl+L>dn
2\ = 1@ a 2 a;
ki
1<j<N,tel0,00), (1.14)

where B;(t)’s are independent one-dimensional standard Brownian motions.
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Zeros of Airy Function and Relaxation Process 1181

For Y(0) =x € RV, set £V(.) = Z;\’:l 8:;(-) and consider the process E4(r) starting
from the configuration £V . We consider a set of initial configurations £" such that they are
in general different from the N-particle approximation of (1.9),

N
EXCOI =D 8() =) 84,0, (1.15)
=1

ac Ay J

but the particle density p(x) of limy_ o &Y will show the same asymptotic in x — —o0
as (1.8). Because of the strong repulsive forces acting between particle pairs in (1.1), such
confinement of particles in the negative region of R at the initial time causes strong positive
drifts of Brownian particles. The coefficient (1.13) of the drift term D 4, ¢ added in (1.12),
however, negatively diverges

12\'3
Dy, ~—(—= N3 —c0 as N — oo (1.16)
Ay 72 . .

We will determine a class of asymmetric initial configurations denoted by Xz', which in-
cludes &4 as a typical one, such that the effect on dynamics of asymmetry in configura-
tion will be compensated by the additional drift term D 4, ¢ in the infinite-particle limit
N — oo and the dynamics with an infinite number of particles exists. Note that we should
take N — oo limit for finite # < co in our process (1.12) to discuss non-equilibrium dy-
namics with an infinite number of particles. In the class X', when the initial configuration
is specially set to be &4, (1.9), we can prove that the dynamics shows a relaxation in the
long-term limit  — oo to the equilibrium dynamics in ;. In the proof we use the special
property of the systems (1.1) and (1.14) such that the processes have space-time determi-
nantal correlations. This feature comes from the fact that if and only if the strength of pair
force is exactly equal to 1/x when the particle distance is x, i.e., iff § =2, Dyson’s model
is realized as the Brownian motions conditioned never to collide with each other [10, 12].

In order to explain the importance of the notion of entire functions for the present prob-
lem, we rewrite the results reported in our previous paper [13] for Dyson’s model with
symmetric initial configurations below. Then the changes which we have to do for the sys-
tems with asymmetric initial configurations are shown. There the origin of the quadratic
term ¢ /4 in (1.12) will be clarified.

1.2 Processes with Space-Time Determinantal Correlations and Entire Functions

In an earlier paper [13], we studied a class of a non-equilibrium dynamics of Dyson’s model
with 8 = 2 and an infinite number of particles. As an example in the class, we reported a
relaxation process, denoted here by (E(¢), Pg;,), which starts from a configuration

E() =) 8.0), (1.17)

acl

in which every point of Z is occupied by one particle, and converges to the station-
ary state [g,. This process (E(2),Pgsn) is determinantal, in the sense that there is a
function K, (s, x; ¢, y) called the correlation kernel such that it is continuous with re-
spect to (x,y) € R? for any fixed (s,t) € [0,00)?, and that, for any integer M > I,
any sequence (N,)Y_, of positive integers, and any time sequence 0 < #; < --- < ty

< 00, the (Ny, ..., Ny)-multitime correlation function psin(tl,xg\l,l); ...;tM,x%),x%I) =
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1182 M. Katori, H. Tanemura

(™, . xy?) € RV 1 < m < M, is expressed by a determinant of a Y | N, X

M . .
> m—i Ni asymmetric real matrix;

(1 M
pan(i s xl)) = det Kt xf D) (18)
jfgz;’zl.}ng7 !

The finite dimensional distributions of the process (E(?), Ps,) are determined by Kgj,
through (1.18). It is expected that the correlation kernel Kg;, is described by using the sine
function as is the correlation kernel K, of the stationary distribution pg, given by (1.3). It
is indeed true. Set

f(z) =sin(rz), z€C, (1.19)
and
efxz/Zt
psin(ts X) = y IER\{O}, xeC. (120)
27 |t]

When ¢ > 0, pgn(¢, ¥y — x) is the heat kernel: the solution of the heat equation du(z, x)/dt =
(1/2)8%u(t, x)/8x> with lim,_ g u(t, x)dx = 8, (dx), and is expressed using (1.19) as

1 2,2
Panlt.y =) = 3 /R due™ L f ) fuy) + fux+1/2) f @y +1/2)].

For 0 < s < ¢, by setting (1.20), the Chapman-Kolmogorov equation
/Rdy Psin(t = 8,2 = Y) Psin(8, y — X) = psin(r, 2 — X) (1.21)
can be extended to
/Rdy Psin(—1,2 = Y) Psin(t = 8,y — %) = pgin(—5,2 — X). (1.22)

Then K, (s, x; £, y) is given by

f@)
Ke(s,x;t,y) = Z / ps(0,a;s, x)
acf~1(0) \/_ f( )
—1(s>1t)ps(t,y;s,x), s,t>0,x,yelR (1.23)

with setting (1.19) and p (s, x; ¢, y) = psin(t — 5, ¥y — x) with (1.20), where £71(0) denotes
the zero set of the function f; f~1(0) ={z: f(z) =0}, f'(a) =df(2)/dz|,=a, and 1(w) is
the indicator of a condition w; 1(w) = 1 if w is satisfied, and 1(w) = 0 otherwise. In this
paper [, dz- means the integral on the imaginary axis in C from —+/—Too to v/—Too.
The well-definedness of the correlation kernel Kg;, and thus of the process (E(¢), Pgy) is
guaranteed [13] by the fact that the sine function (1.19) is an entire function (i.e., analytic in
the whole complex plane C), and the order of growth py, which is generally defined for an
entire function f by

. loglog M s (r)
oy =limsup ————
r—00 log

for M, (r) = maxlf(z)l
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Zeros of Airy Function and Relaxation Process 1183

is one. (The type defined by oy = limsup,_, ., log M ;(r)/r"/ is equal to 7 for (1.19). That
is, the sine function (1.19) is an entire function of exponential type w [16]; M;(r) ~ ™" as
r — o0.) We can show that

Ksin(ta X3, y)Ksin(tv yit, X)dXdy - EZ(dx)l(x = y) ast— 0,

since f~!(0) = sin~'(0)/7 = Z. It implies that the initial configuration (1.17) of the relax-
ation process (E(t), Pgy,) shall be regarded as the point-mass distribution on the zero set of
the sine function (1.19). Moreover, we showed in [13], by noting

- ia ;((Z)) = Kn(z — ),
ifae f~1(0) =7 and z # a for (1.19), that
Ken(s +0,x;t+6,y) > Kot —s,y —x) asf — 0o (1.24)
with the so-called extended sine kernel,
fol du ™12 cos(rux) ift >0,
Kin (2, x) = § Ksin(x) if t =0, (1.25)

— [ du 12 cos(rux) ift <0,

x € R. The equilibrium dynamics in (g, first studied by Spohn [25], has been shown to be
determinantal with the correlation kernel (1.25) by Nagao and Forrester [18]. This process
is realized in the long-term limit of the relaxation process (E (), P, ). See also the Dirichlet
form approach by Osada to the reversible process with respect to g, [20, 21].

Now we set

f@)=Ai(z), zeC (1.26)

The Airy function Ai(z), (1.4), is another entire function, whose order of growthis p; =3/2
with type oy = 2/3; max,, | f ()| ~ exp[(2/3)r*/*] as r — o0. For ¢ > 0, we consider

pait, ylx) = f due" P fu+x)fw+y). x.yeR, (127)
R

which is the solution of the differential equation;

0] 1/ 02
gu(t,x) = 3 <ﬁ —x) u(t,x) with }iir&u(t,x)dx =04,(dx).

The integral [, dz pai(t, z|x) is given by

(t, x) % b (1.28)
=exp|——+—). .
LX) =Pl =5 Ty

We find, for s <t <0, g(s, x)pai(t — s, y|x)/g(t, y) is equal to the transition probability
density of

2
B(t) + 7 (1.29)
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1184 M. Katori, H. Tanemura

from x at time s to y at time ¢, x,y € R, where B(¢),t € [0, 00) is the one-dimensional
standard Brownian motion. (See also [6] and references therein.) Then for 5,7 € R, s #
t,x,y e C, we set

12 52
q(s,t,y—x) = psin<t -5, (y— Z) - (x — Z))

_ 1 ex _(y—X)er(tﬁLS)(y—X)_(t—S)(tJrS)2
BN T ) 4 £ :
(1.30)
and as an extension of (1.27) we define
(t,y)
pait —s,y1x) = AR q(s, 1,y —x)
g(s, x)
1 (y—x)? (t—9)(y+x) (t—S)3]
=————e€xp|— — + . (L.31
2l —s] p[ 2 —s) 4 9 (1.31)
Corresponding to (1.21) and (1.22), we have the two sets of equalities
/dyq(s,z,z—y)q(O,s,y—x)=q(0,t,z—x), (1.32)
R
/dyq(t,O,z—y)q(s,l,y—x) =q(s,0,z —x) (1.33)
R
and
/dYPAi(t_SvZ|Y)pAi(S,y|x):PAi(t,Z|x)» (1.34)
R
/ dy pai(—t, 2ly) pasCt — 5, ¥1x) = pai(—s, 2lx) (1.35)
R
forO<s <t.

Let Ka; be the function given by (1.23) with setting (1.26) and p/(s, x; ¢, y) = pai(t —
s, ylx) with (1.31). We will prove that K,; is well-defined as a correlation kernel and it
determines finite dimensional distributions of an infinite particle system through a similar
formula to (1.18). We denote this system by (Z_4(7), Pa;). The fact that pa; used in Kj; is a
transform (1.31) of the transition probability density g of (1.29) is the origin of the quadratic
term ¢2/4 in (1.12). We can show that

Kai(®, %32, )Kai(t, y; 1, x)dxdy — E4(dx)1(x = y) ast— 0.
By using the integral formula for (1.26)

1 f@ 1
z—a f'(a) (Al (a))?

/‘00 duAi(u + 2)Ai(u + a)
0

for a € A, 7 # a, and the fact that {Ai(x + a)/Ai'(a), a € A} forms a complete orthonormal
basis for the space L?(0, 00) of square integrable functions on the interval (0, co) [27], we
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Zeros of Airy Function and Relaxation Process 1185

will prove that
Kai(s +60,x:t+6,y) — Kai(t —s, ylx) as6 — oo, (1.36)
where Kp; is the so-called extended Airy kernel,

fooo due ™2 Ai(u 4+ x)Ai(u + y) ift >0,
Kai(, y|x) = o (1.37)
— ffoo due ™2 Ai(u + x)Ai(u +y) ifr <0,

x,y € R. We denote by (E 4(t), Pa;) the infinite particle system, which is determinantal
with the correlation kernel Ka; [9, 12, 15, 19]. The Airy kernel (1.7) of ua; is given by
Kai(y]x) = Kai(0, y|x) and thus (E 4(¢), Pa;) is a reversible process with respect to fta;.
The process (E 4(¢), Pai), which is determinantal with the correlation kernel Ky;, is a non-
equilibrium infinite particle system exhibiting the relaxation phenomenon from the initial
configuration & 4 to the stationary state fLa;.

Then consider the finite-particle system (1.12) again. Let IP’E be the distribution of the
process B4 (1) = Z =10y, starting from a configuration EN, We denote by 9t the space
of nonnegative integer-valued Radon measures on R, which is a Polish space with the vague
topology: we say &, converges to & vaguely, if lim,_, fR p(x)é,(dx) = ngo(x)S (dx) for
any ¢ € Co(R), where Cy(R) is the set of all continuous real-valued functions with com-
pact supports. Any element & of 9t can be represented as £(-) = Y jen 8x; () with an in-
dex set A and a sequence of points in R, x = (x;)jep satisfying (/) ={x; : x; € [} <
oo for any compact subset / C R. For A C R, we write the restriction of £ on A as
ENAC) = ZjGA:xng 8y; (). We put My = {§ € M: E({x}) < 1forany x € R}. We will

N
prove that the finite particle process (E 4 (1), }P’i ) is determinantal for any initial configu-

ration £ € 9 and give the correlation kernel K [A (Proposmon 2.4). For & € 9 with an
infinite number of particles £(R) = oo when K converges to a continuous function
as L — oo, the limit is written as ]K CIf ]P"m[ converges to a probability measure IP’AE

on M) which is determinantal w1th the correlation kernel K’ "1» weakly in the sense of
finite dlmenswnal distributions as L — oo in the vague topology, we say that the process
(E.A(t), %)) is well defined with the correlation kernel K';. (The regularity of the sam-
ple paths of E 4(#) will be discussed in the forthcoming paper [14].) We will give suffi-
cient conditions for initial configurations & € 9y so that the process (E 4(7), ") is well
defined (Theorem 2.5). We denote by X the set of configurations & satisfying the con-
ditions and put Xz' = X4 N M. It is clear that the configuration &4 € Xg'. Then, if we
consider the finite particle systems E 4(¢) = Zj.v:l 8y N = 2, with (1.12) starting from

the N-particle approximation of &4, (1.15), we can prove (E.4(1), Piﬁ) — (EA1),Paj)
as N — oo in the sense of finite dimensional distributions (Theorem 2.6(i)). That is,
(BA(),Ppr) = (B (D), ]P’f;(‘) with (1.9). Moreover, we will show (1.36) and prove the re-
laxation phenomenon (E 4 (t + 0), Pa;) = (E4(?), Pa;) (Theorem 2.6(ii)).

The paper is organized as follows. In Sect. 2 preliminaries and main results are given.
Some remarks on extensions of the present results are also given there. In Sect. 3 the prop-
erties of the Airy function used in this paper are summarized. Section 4 is devoted to proofs
of results.

2 Preliminaries and Main Results

Foré() =Y jeA ‘ij (-) € M, we introduce the following operations;
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1186 M. Katori, H. Tanemura

(shiff) foru e R, 1,£(-) = ZSXjJru “),

JEA

(square) £P() =" "8.().

JjeA
We use the convention such that
1_[ f(x)=exp {/ &(dx)log f(x)} = 1_[ £ (x)ED
Xt R xesuppé

for £ € 91 and a function f on R, where supp& = {x € R: £({x}) > 0}. For a multivariate
symmetric function g we write g((x)xez) for g((x;)jea)-

2.1 Determinantal Processes

As an 9M-valued process (E(t),P¥), we consider the system such that, for any integer
M=>1, f, e Ce(R),6, e R, 1 <m<M,0<1t <--- <ty < oo, the expectation of
exp{fozl O f]R Jm(x)E(ty,dx)} can be expanded by

Xn(x) =€ 1 1<m<M,

as

M
> o | fm<x>E<tm,dx)”
R

m=1

Flx1=E* [GXP{

-y .y IM—[A;!

Ni=0  Ny>0m=lI

Ny Ny
[ N
RM il RVM i1

M Ny

x nnxm(x;"’))p(tl,x(”;...;tM,x(M))- 2.1

m=1 j=1

Here p’s are locally integrable functions, which are symmetric in the sense that p(...; t,,

a(x™); . ) = p(.. ity x™;..) with o(x™) = (x;rz’l)),...,xf;f])vm)) for any permu-
tation ¢ € Sy,,,1 < Vm < M. In such a system p(t;,xV;...; 13, x™) is called the
(N1, ..., Ny)-multitime correlation function and G¢ [ x| the generating function of multitime

correlation functions. There are no multiple points with probability one for > 0. Then we
assume that there is a function K(s, x; ¢, y), which is continuous with respect to (x, y) € R?
for any fixed (s, t) € [0, 00)?, such that

p<t1,x“>; ...;tM,x‘M)) = det [K(Zm,x(’");tﬂ,xlﬁ"))]
1<j<Nm,1<k=<Ny, J
1<m,n<M
for any integer M > 1, any sequence (Nm)y:1 of positive integers, and any time sequence
O<tj<---<ty<oo.LetT={t,...,1y}. Wenote that ET = D ier S ® B (1) is a deter-
minantal (Fermion) point process on T x R with an operator I given by

K760 =3 [ dyKexit @), fe.)Co, 1.

teT
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Zeros of Airy Function and Relaxation Process 1187

When K is symmetric, Soshnikov [24] and Shirai and Takahashi [23] gave sufficient condi-
tions for K to be a correlation kernel of a determinantal point process. Though such condi-
tions are not known for asymmetric cases, a variety of processes, which are determinantal
with asymmetric correlation kernels, have been studied. See, for example, [12, 29]. If there
exists a function K, which has the above properties and determines the finite dimensional
distributions of the process (E(¢), P?), we say the process (E(t), P%) is determinantal with
the correlation kernel K [13].

For N € N, the determinant of an N x N matrix M = (m )<<y is defined by
Yoe sy Sen(o) ]—[j.vzl m g (j), where sgn(o’) denotes the sign of permutation o. Any permu-
tation o consists of exclusive cycles. If we write each cyclic permutation as

C _ a b . e a)
- b C e a
and the number of cyclic permutations in a given ¢ as £(o), then the determinant of M is
expressed as

detM:ngn(a) 1_[ (mahmbc...mwa).

ceSy cjl<j<t(o)

It implies that, with given a;, ay, ..., ay, even if each element m ;. of the matrix M is re-
placed by m i x (a;/ay), the value of determinant is not changed. The above observation
will lead to the following lemma.

Lemma 2.1 Let (E(t),P) and (E(t), @) be the processes, which are determinantal with
correlation kernels K and K, respectively. If there is a function G (s, x), which is continuous
with respect to x € R for any fixed s € [0, 00), such that

K(s, x;t,y) = G(s, ) K(s,x; t,y), s,t€[0,00), x,y€R, (2.2)
G(t,y)
then
(E(1),P) = (E(1),P) (2.3)

in the sense of finite dimensional distributions.

In literatures, (2.2) is called the gauge transformation and (2.3) is said to be the gauge
invariance of the determinantal processes.

2.2 The Weierstrass Canonical Product and Entire Functions
For £V e My, N (R) = N < oo, with p € Ny = N U {0} we consider the product

z
neto- 1 o)
& o= [ 6(3p) zeC
xeeNn{o)e
where
1—u if p=0,

Gu. p) = . , 2.4)
(1—u)exp[u+”7+---+”7] if peN.
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1188 M. Katori, H. Tanemura

The functions G (u, p) are called the Weierstrass primary factors. With o > 0 we put

1 1/a
M (E") = ( f EN(a'x)> .
o 1x[®

For & € M, with E(R) = oo, we write M, (&, L) for M,(§ N[—L,L]),L > 0, and put
My (&) =1lim; o My (&, L), if the limit finitely exists. If M,,(§) < oo for some p € Ny,
the limit

M2 = lim M,EN[-L. 1= [ G(S.p). zeC @.5)

xe&n{oje

finitely exists. This infinite product is called the Weierstrass canonical product of genus p
[16]. The Hadamard theorem [16] claims that any entire function f of finite order p; < 00
can be represented by

f@=2"e"9T, (5, 2), (2.6)
where p is a nonnegative integer less than or equal to ps, P,(z) is a polynomial in z of
degree ¢ < p¢, m is the multiplicity of the root at the origin, and £, =) _ 100N 8. We
give two examples;

sin(z) = wzlly(&z, 2), 2.7

Ai(z) = eI (.4, 2) 2.8)
with (1.17), (1.9) and

dy = log Ai(0) = —log (32/3r(2 /3))’
_AV©O) _ 3'8Te/3)  33re/3) (2.9)

TOAI(0) TA/3) 21

For £V € MM, with €Y (R) = N we put

Z—a

X —a

q)P(sN’a’Z)EHP(T*aENvZ_a): 1_[ G(

xeeNN{a)e

,p>, a,zeC. (2.10)
With (1.15) we set
PAEN, ) =eMTexp [/R %Ef{(dX)} MoEY, 2)

— edlzexp|:/ %(SJIX _EN)(dx):|Hl($N’Z)’ Z G(C, (211)
{0y

(DA(gN?avZ) (DA(t—uést_a)

— edl(z—a) exp |:/ Z;—agﬁ(dx)] <D0($N,Cl, Z), a,ze C.
R

(2.12)
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Zeros of Airy Function and Relaxation Process 1189

Lemma 2.2 Let £V € My with EY(R) = N < oo and EN({0})) = 0. Then for a €
suppé ", z #a,

N 1 ®uEY,2)
uE a0 = 2.13)
where &', (-,a) = 0P 4(-,2)/02|;=a-
Proof Since 1 —(z —a)/(x —a)=(x—2)/(x —a)=(1 —z/x)/(1 —a/x),
diz ZgN N _
DAEY a.2) e expl [ ZEN (dx)To(EY — 84, 2) 2.14)

T el expl [, €N (d0)|T(EN — 5, a)°

where the numerator is equal to ® 4 (£V, 7)/(1 — z/a). From (2.11), we have

d
a—m(sN,z) =d®4E",2)
Z

1
+ et / —sﬁ(dx)exp[ / fsﬁ(dﬂ Mo(s™.2)
RX RY

+eh7exp [/ fs,ﬁ(dy)]/ (—1) Mo(" — 8., 2)&" (dx).
R Y R X

Since a € supp£” is assumed,
1
(Y, a) =eexp [/ O—ISN(dX)] <——) Mo(E" — 84, a).
R X a

It implies that the denominator of (2.14) is equal to —a®’, (¢ N a). Then (2.13) is ob-
tained. O

For £V € 9, with €Y (R) = N we put

MaEY) =/

1
;(éﬁ — V) (dx). (2.15)
{0}¢

For & € My with E(R) = oo we write M 4(§, L) for M4(& N[—L, L]),L > 0, and put
M4 (&) =1limy oo M 4(&, L), if the limit finitely exists. For & € My, p € Ny, a € R, and
z € C we define ®,(§,a,2) =lim; o ®p(6 N[a —L,a+ L],a,z) and ®4(§,a,2) =
lim; o ®4(E N[a—L,a+ L], a,z), if the limits finitely exist. We note that ®,(£,a, z)
finitely exists and is not identically 0, if M, (t_.§) < oo, and ®4(§,a,z) does and
Dy, a,2)#0,if IMa(t_4&)| < 00 and My (7_,&) < 0o. For & € My, a € suppé, the fol-
lowing equalities will hold, if all the entries of them finitely exist;

a

z\§{0p
(&, a,z) = (&, 2)Do(€ N {0}, a,0) (—) :
a a—2z
o(€ N {0}, a,0) = Mo(£ N {—a}®, —a) Py N {0}, a*, 0)2' 5=V
and then

q)l(SV a, Z) = eS(éya,Z)nl (S’ Z)nl (S N {_a}C, _a)
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£({0})
< ) a (2.16)

x B0 N (0), % 0) (2 ,
a a—z
where

zZ—a

S, a,2) =/ £(dx) —f Ze(dx) +/ De(dr). 2.17)
{a}e X —da {0y X {0,—a)c X

Lemma 2.3 Forac A, z#a

1 Ai(z)
——=9 ,a, 7). 2.18
Z—a All(a) .A(S.A a Z) ( )
Proof By (2.8) and the definition (2.11),
Ai(z) = e 4(E4.2), z€C. (2.19)

As approximations of the Airy function we introduce functions

N

Ay (z) = e®oraz ]_[ (1 — i) e/, NeN, (2.20)

a
=1 ¢

where 0 > a; > --- > ay are the first N zeros of Ai(z). Since S% = Z;V:l 3a,~ satisfies the

condition of Lemma 2.2, (2.13) with (2.19) and Ai} (a;) = e (D/A(S,IX’ aj) gives

1 Ay _
z—a; Aiy(a;)

qD.A(é:_,[X’aj7Z)a 1§j§N~

Taking N — oo, we have (2.18). O
2.3 Statement of Results

For the solution X (1) = (X(t), X»2(?), ..., Xn(¢)) of Dyson’s model (1.1) with 8 = 2 with
the initial state X (0) = x, we denote the distribution of the process E(t) = Z?’Zl 8x;u) by
P with N = Z;V=1 (ij. In [13] we proved that Dyson’s model (1.1) with 8 = 2 starting
from any fixed configuration £ € 9 is determinantal with the correlation kernel K¢ N given
by

K (s, x: 1, y) =

1 %‘ d/ dw
- 2 4w
2r/=1Jreyy  Jymir /-1
1 w—z
I1 (1— / )psm(—r,w—w
w—2z X —Z

x'egN

—1(s > t) psin(s — £,y — x), (2.21)

X Dsin(8,X — 2)

where T'(§") is a closed contour on the complex plane C encircling the points in supp &~
on R once in the positive direction, and py;, is given by (1.20). If ¥ € 9, by performing
the Cauchy integrals (2.21) is written as
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Zeros of Airy Function and Relaxation Process 1191

KE" (5, x:1,y) = fs<w)/ pm@x ) PoEY X'\ ¥) pan(—t, ¥ — )
J_R
—1(s > ) psn(s —t,x — ). (2.22)

Then the following is obtained for the process (E 4(), ]P’i:v) with E 4 (1) = ijzl (Syj(,),
where Y (1) = (Y1(2), ..., Yn(2)) is given by (1.12).

Proposition 2.4 The process (E 4(t), ]P’iiv), starting from any fixed configuration £V € M,

N
with €N (R) = N < o0, is determinantal with the correlation kernel Ki‘ given by

N dy’
KE Xt =/ Ndx' /
Nomin = [ean [

—1(s > t)q(t,s,x —y), (2.23)

q0,5,x —x)PAEN, X', y)g(t,0,y — )

where q is given by (1.30).

We introduce the following conditions:

(C.1) there exists Cy > 0 such that [M 4(¢)| < Cy,
(C.2) (i) thereexist @ € (3/2,2) and C; > 0 such that M, (§) < Cy,
(i1) there exist 8 > 0 and C, > 0 such that

Mi(t_pEP) < Cy(lal v 1)™F  forall a € suppé.

We denote by X the set of configurations & satisfying the conditions (C.1) and (C.2), and
put },‘5“ =X4N M.

Theorem 2.5 If£ € X7, the process (B 4(1), Pi) is well defined with the correlation kernel

K (s, x;1,y) = /E(dX)/

—1(s>1t)q(t,s,x — y). (2.24)

—xNP A, X', ¥)q(,0,y —y)

In the proof of this theorem, a useful estimate of ® 4 in (2.24) is obtained (Lemma 4.3(ii)).
By virtue of it, we can see

]Ki‘(t, x;t, y)Ki‘(t, y;t,x)dxdy - E(dx)1(x=y) ast—0 (2.25)
in the vague topology. Then Theorem 2.5 gives an infinite particle system starting form the

configuration &.
The main result of the present paper is the following.

Theorem 2.6 (i) Let éﬁ’(-) be the configuration (1.15). Then

(Ba(0). P 4 — (Ba(?),Pai) as N — o0

in the sense of finite dimensional distributions. Here the process (E 4(t), Pa;) is determinan-
tal with the correlation kernel (1.23) with setting (1.26) and p (s, x;t,y) = pai(t — 5, y|x)
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with (1.31), that is

1 Ai
Km0 = 3 f s .3l P12l
acAi~1(0)
—1(s > 1) pai(s — 1, x|y). (2.26)

(ii) Let (E 4 (1), Pa;) be the process, which is determinantal with the extended Airy kernel
(1.37). Then

(EA(l+9),PAi)—) (EA(I),PAi) as 6 — oo (227)

weakly in the sense of finite dimensional distributions.
2.4 Remarks on Extensions of the Results

(1) By definition (2.15), M _4(£.4) = 0. The asymptotic property of the zeros (1.11) implies

o 1 . R 3
A= (Mo(n) = ZA N (2.28)

In general, order of growth p; of a canonical produce (2.5) is equal to the convergence
exponent py of the sequence of its zeros [16]. For Ai(z), p; = 3/2. The function M ()
may be called the Airy zeta function [30], which is meromorphic in the whole of C [7].
Moreover, we know

Ay — EN i S
15 (2)_M1(5A)_£a2_dl<w (2.29)
with (2.9). Then &4 satisfies the conditions (C.1) and (C.2): £4 € X*. Since &4 € My,
Theorem 2.5 guarantees the well-definedness of the infinite particle system (Z 4 (%), IP’i(‘).
(Its equivalence with (Z(t), Py;) is stated in Theorem 2.6(i).) Note that the negative diver-
gence (1.16) of the drift term D 4, ¢ of (1.12) in N — oo for ¢ < oo corresponds to that
A1) =— ZaeA(l/a) = o0o. This fact and (2.29) mean that the Airy function has genus 1
[16, 30].
Examples of infinite particle configurations in X' other than &4 are given as follows.
For x > 0, we put

g ) =sgn()x|*, xeR, and ()= S ().
Lel

For any « > 1/2 we can confirm by simple calculation that any configuration & € 9%, with
supp& C suppn* = {g“(¢) : £ € Z} satisfies (C.2)(i) with any « € (1/«,2) and some C; =
Ci (o) > 0 depending on « and (C.2)(ii) with any 8 € (0, 2k — 1) and some C, = C»>(8) >0
depending on B. Assume that £ € 91, is chosen so that supp& C suppn* for some « >
1/2 and |[M 4(§)| < co. Then & € X3'. The fact (1.11) implies that this assumption can be
satisfied only if x € (1/2,2/3].

(2) If there exists, however, 8/ < (8 — 1) A (B/2) for & € M, such that g{x € & : E([x —
|x |’9’, x+|x |ﬂ/]) > 2} = oo, then £ does not satisfy the condition (C.2)(ii). In order to include
such 1n1t1a1 configurations as well as those with multiple points in our study of the process
(B (), P ") with £(R) = oo, we introduce another condition for configurations:
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(C.3) there exists x € (1/2,2/3] and m € N such that
m(§, k) = Tﬁ%%([g“(k), g (k+ 1)]) <m.

We denote by 9 the set of configurations & satisfying (C.1) and (C.3) with k € (1/2,2/3]

= U Ui

and m € N, and put
ke(1/2,2/31meN

Noting that the set {§£ € 9 : m (&, k) < m} is relatively compact for each « € (1/2,2/3] and
m € N, we see that 9% is locally compact.

In the present paper, we report our study of the relaxation process (E(z), Pa;) from a
special initial configuration & 4 to the stationary state wa;. We expect that p,; is an attractor
in the configuration space % and &4 is a point included in the basin. Motivated by such
consideration, we are interested in the continuity of the process with respect to initial config-
uration. We have found, however, that if £(R) = oo, the weak convergence of processes in
the sense of finite dimensional distributions can not be concluded from the convergence of
initial configurations in the vague topology. Following the idea given by our previous paper
[13], we introduce a stronger topology for 9.

Suppose that £, &, € P, n € N. We say that &, converges ® 4-moderately to &, if

lim ®4(,,vV—1,)=®4(&,+v—1,-) uniformly on any compact set of C.  (2.30)

It is easy to see that (2.30) is satisfied, if the following two conditions hold:

lim sup lim |M4(&,, M) — Ma(§,, L)| =0, (2.31)
L~>00”>0 —00

lim sup|Ms(&,) — My(&,, L)| =0. (2.32)
L—o00 n>0

By the similar argument given in [13], the following statements are proved.

(i) If £ € P, the process (E 4, ]Pi) is well defined.

(ii) Suppose that £, &, € @;‘}n, n € N, for some « € (1/2,2/3] and m € N. If £, converges
® 4-moderately to &, then (E 4, IP’i}) — (B4, ]P’i) weakly in the sense of finite dimen-
sional distributions as n — oo in the vague topology.

Moreover, we can show wa;(2)%) = 1. By this fact and the above mentioned continuity
with respect to initial configurations, we can prove that the stationary process (E_4(t), Pai),
which is determinantal with the extended Airy kernel (1.37), is Markovian [14].

(3) As mentioned in Introduction, the purpose of the present paper is to give a method for
asymmetric initial configurations to construct infinite particle systems of Brownian motions
interacting through pair force 1/x. In order to clarify the results, we have concentrated on
the case in this paper such that the initial configuration is & 4 (Theorem 2.6) or its modifi-
cation £ € .’{5“; see the condition (C.1) with (2.15) (Theorem 2.5). In the former case the
constructed infinite particle system (EZ_4(t), Pa;) has the stationary measure (i, which is
obtained in the soft-edge scaling limit of the eigenvalue distribution in GUE well-studied in
the random matrix theory. Thus we have specified the entire function used in our analysis
in the form @ 4 (£, z) given by (2.11), which is suitable for the Airy function (see (2.19)).
The point of our method is to put the relationship between the entire function appearing
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in the correlation kernel K?, the “typical” initial configuration &, and the drift term in the
SDEs providing finite-particle approximations. By the same argument as reported here, the
following will be proved. Let f be the entire function such that f(0) # 0, it is expressed by
the Weierstrass canonical product of genus one, IT; (&, z), and the zeros can be labelled as
0 < |x1| <|xa| <---. Then with £ = >, 8, we put

N
1
D = —
€N =2_ .
j=1
and introduce the N -particle system
Y/(1)=X;(0)+ DE;, N)t, 1<j<N, 1e[0,00),

where X (¢) = (X(¢), ..., Xn(2)) is the solution of Dyson’s model (1.1) starting from the
first N zeros of f, X;(0) =x;,1 <j<N.Then E/(t) = Zj‘]:l (Syf(t) converges to the
J

dynamics in N — 00, in the sense of finite dimensional distribution, which is determinantal
with the correlation kernel

Er ’ dy, ’ ro ’

K (5, x:1, >=/s (dx)f Y a5 x = )1 E X ¥ Pan( =t ¥ — )

; n=[& TP 1Er X Y Pan(—t, Y =y
—1(s > ) psin(s —t, x — y). (2.33)

Moreover, even if the initial configuration & is different from & s, but it satisfies the condition

<C0

L
’/ — &y —8dx)
_L X

for any L > 0 with a positive finite Cy independent of L then the process starting from &,
is well-defined. In general, the obtained dynamics with an infinite number of particles is not
stationary, while Theorem 2.6 gave the example which converges to a stationary dynamics
(Z2.4(1), Paj) in the long-term limit.

3 Properties of the Airy Functions

3.1 Integrals

By the fact Ai”(x) = xAi(x), the following primitive is obtained for ¢ # 0 [30],
1
/du (Ai(c(u + x))? = (u + x)(Ai(c(u + x)))? — ;(Ai’(c(u +x)))2, 3.1)

/ du Ai(c(u + x))Ai(c(u +y))

_ Al'(c(u +x0)Ai(c(u + y) — Aie(u +x)Ai'(c(u + )
B cA(x—y) '

(3.2)

By setting ¢ = 1 and integral interval be [0, 00) in (3.2), we obtain the integral

Ai(X)AI'(y) — Al'(x)AL(y)

/ du Ai(u + x)Ai(u+y) =
0 xX—y

@ Springer



Zeros of Airy Function and Relaxation Process 1195

since lim,_, o, Ai(x) = lim,_, o, Ai'(x) =0 by (1.5). f we set y =a € A and x = 7 # a, then

o) Ai Ai
/ du Ai(u + ) A + @) = SDAT@
0 z—a
since Ai(a) = 0. Then we have the expression
L All) ! /Ood Ai(u + 2)Ai(u +a) (3.3)
= u Ai(u i(u+a .
c—aAl@  Al@)? )y -
forae A, z#a.
3.2 Airy Transform
The following integral formulas are proved [11].
Lemma 3.1 Forc>0,x,yeR
1 ;
/ du e Aiu + ) Al + y) = —— e~ G0}/ @) —clr4y)/ 2412 (3.4)
R 4mc
/ dy / du e Ai(u + x)Ai(u + y) = e~ 3, (3.3)
R R
Proof Consider the integral
= f du e Ai(u + x)Ai(u + y)
R
[} 0
= / due™Ai(u+ x)Ai(u + y) + / due™Ai(u + x)Ai(u + y).
0 —00

By the definition of the Airy function (1.4), for any n > 0,

I = / du e / / V=D B34 () 24w 3+ (y+u)w)
0 (2 )2 Sw>c—n

0
+/ due / / V=1{Z3 /3+(u+x)z+w;/3+(u+y)w}
—00 (2 )2 Sw<c—n

s3]
— 1 2/ dZ/ dw erl(z3/3+xz+w3/3+yw)/ du e{c+ﬁ(z+w)}u
(27[) Jz=n Sw>c—n 0

/ dZ/ dw eF(Z /3+M+w3/3+yw)/ duec+x/7(z+w)}u
Jz=n Sw<c—n —00

(271)2

3 3 1
- dZ/ dw eﬁ(z /3+xz+w’ /3+yw)
(2”)2 /i;zzn Sw>c—n C+ A/ —l(Z + w)

/ / dw eJ?l(z3/3+xz+w3/3+}'w) 1
(27’:) Sw<e—n C+’\/—1(Z+w)

V@ 342) _ 71w
dze dw dw .
(27[) Jz=n Sw<ce—n Sw>c—n C+ _1(Z + w)
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It is equal to the integral

1 V1w 34V=Tyw)
—pdw —m———,
Zn«/—lfé w—(—-1c—2)

dz erl(z3/3+xz)

27 Jz=n

where C is a closed contour on C encircling a pole at w = +/—1c¢ — z once in the positive
direction. By performing the Cauchy integral, we have

1= / dz VT 340 T om0 3=yt To)
27 Jz=n

Lelf‘s/3—€y / dz 6—012-%—\/—71():—}’—#—02)2.

27 Jz=n

By performing a Gaussian integral, we have (3.4). Since

3 3

:—i{y—(x—cz)]z—cx—i-c—,

Loy =S+ &
G TV TR T YT T T 3

the Gaussian integration of (3.4) with respect to y gives (3.5). |

By settingc=1/2 > 0in (3.5) and ¢ = (t — 5)/2 > 0 in (3.4), respectively, we obtain the
equalities

/dy/du e Ai(u + x)Ai(u + y) = g(t, x),
R JR

g(t,y)
g(s, x)

with (1.28) and (1.30). Thus we have defined g(¢,x) for any r € R by (1.28) and
pai(s, x;t,y) forany s, t € R, s # ¢ by (1.31). As special cases, we have

/ du "2 Ai(u 4+ x)Aiu + y) = q(s,t,y —x)
R

PAi(t»)’|x)=g(l,)’)Q(Oalvy_x)a (36)

pai(—t, ylx) = q,0,y—x), t>0,x,y,eR. 3.7

1
g(t, x)
If we take the ¢ — 0 limit in (3.5), we obtain

/dg /dxAi(s—x)Ai(s/—x): 1.
R R

The expression (3.4) and the above result implies the orthonormality of the Airy function in
the sense;

( / du Ai(u + x)Ai(u + y)> dy = 8,(dy). (3.8)
R

The Airy transform f(x) — @(&) is then defined by
0(©) = [ dr feoAice +x) (39)
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and the inverse transform is given by f(x) = fR d& p(§)Ai(§ + x). Now a parameter ¢ € C
is introduced and the family of functions are defined as {w.(x) = Ai(x/c)/|c|}. The Airy
transform (3.9) is then generalized as

1 SE+x
0u(&) = / dE FOw(E +3) = — f de(x)A1< )
R lel Jr c

Lemma 3.2 The Airy transform with ¢ of the normalized Gaussian function f(x) =
™ |/ is given by ¢.(§) = ||l F ROV EDAi(E fe 4 1/(16¢4)). That is,

2 fEFx 1 1 (& 1
/dx—e ( " >_exp{4c3 <S+%>}Al<z+@>. (3.10)

Proof By the definition of the Airy function (1.4),

1—/dx—ex (S—i—x)
c
I 21

B
[l; xﬁe 27 Jr
1 1 k
dk VI 34/ Tek e /dx exp| —x?—+—1-x ).
JT

271 c

dk eV T (k3 /3+(E+x)k/c}

By performing the Gaussian integral we have

dkexp(x/_ +\/_7—k—2).

T 4c?

By completing a cube, we find the equality

K? k
V=1—++v-1 Sk _K&
3 c 4
1 1y’
=v-1l-lk+vV-1—
3 4c?
+ J_ k+ J_ ! £+ !
16 16¢* 4 4¢3 24c3 )
By using the definition of the Airy function (1.4), (3.10) is obtained. ]

For ¢t > 0, y, u € R we will obtain the equality

dz 1 2 12
—Ai(u—l—z)q(l,O,z—y):/dx —e " Ai(v—th—i—u—i—y— —)
/JTlR V-1 R AT 4

by changing the integral variable as z = x = (z — y +1>/4) /~/—=2t. If we set E = (u + vy —
t2/4)//=2t and ¢ = 1/4/—2t, the RHS is identified with the LHS of (3.10). Since

& n 1 n 1 £+ 1 _ty + ut
T+ —=u+ty, — — = - —,
¢ l6ct Y 46 2463 2T u) T2
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1198 M. Katori, H. Tanemura

(3.10) of Lemma 3.2 with (1.28) gives

/ Al(u +2)g(t,0,z—y) =g, e “PAiu+y), t>0,y,uck.
VIR v/ —

Combination with (3.7) gives

dz
—— Aiu +2)pai(—t,z|y) = e “PAi(u+y), t>0,y,uck. (3.11)
/ﬂR V-1 Al

3.3 Fourier-Airy Series

Let us consider the integral
o0
Iy = / dx Ai(x + ap)Ai(x + ay), ae,ap € A.
0

In the case £ # ¢/, the formula (3.2) gives

Ai'(ap)Ailap) — Ai(ar) Al (arp)
Ly = =0,
ap — Ay

whereas if £ = ¢/, the formula (3.1) gives I;; = (Ai'(a,))?. Therefore the functions

Ai(x +ay)
{7&/(@) ,ZEN} (3.12)

form an orthogonal basis for f € L%(0, 00) (see Sect. 4.12 in [27]). The completeness of
(3.12) is also established:

3 Ai(x +a)Ai(y +ae)

Ai@yy: =@y, xyeo00. (3.13)

teN

Then for any f € L?(0, 0o), we can write the expression

A
foo = Ze f‘j‘)”), x €0, 00),

and call it the Fourier-Airy series expansion. The coefficients ¢, of this expansion are deter-
mined by ¢, = {fooo dx f(x)Ai(x + ap)}/Ai'(ay).

4 Proof of Results

4.1 Proof of Proposition 2.4

With (1.13) we put

D K 2
?(s,x):exp{—DAN( An? —i—s——x)], s,x €R.

2 4
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Zeros of Airy Function and Relaxation Process 1199

By the definition (1.30) of ¢, for s > 0, x, x’ € R, we have

psin(sv (x — DANS —52/4) _x/)
q(oa s, X _.x/)

1 52 , ? 52 ,2
=exp e X_DANS_Z_X -7

Dy,s s°
=exp|:—DANs< “;N +Z_X+X/)i|

=8(s, x)e PAnY

and forr > 0, y, y' € R, we have

Psin(=t,y' = (y = Dayt —12/4)) 1
q(t, 0,y —y) g, y)

ePany

Similarly, we have

Psin(s =1, (x = Days = 8°/4) = (y = Dayt —1°/4)
q([,S, y —X)

e (G
(1]
|

_ Deay =1 _ 8(s,x)
=exp —DANH S =D+ — —(x—y)”—g(t,y).

Then we have

N S2. 12
K s,x—DANs—Z,t,y—DANt—Z

=§(S,X)|:/ Nd/ dy,
RN S W s

x q(0,5,x —x)e DAY @y £V, X', y)eP AN q(1,0,y — y)

—1(s>t)qt,s,x — y):|.
The identity (2.12) implies
e AN Ry(EN, 1, y)eP AN = (N XL Y.
By the gauge invariance of determinantal processes (Lemma 2.1), the proof is completed. [
4.2 Proof of Theorem 2.5

First we prepare some lemmas for proving Theorem 2.5.
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1200 M. Katori, H. Tanemura

Lemma 4.1 Let o € (1,2) and § > o — 1. Suppose that M, () < oo and put Ly =

Lo(et, 8,&) = (2M, (€))%= Then
M(€,L)<L® L=>Ly.

Since this lemma was proved as Lemma 4.3 in [13], here we omit the proof.

Lemma 4.2 If £ satisfies (C.2)(i) and (ii), for any 6 € (a VvV (2 — B),2) there exists C =

C(Cy, Cy,0) > 0 such that

1 1
/(‘0,41]“ (; B X — a) S(dX)

<Clav 17!, aesupp& —&).

“.1)

Proof We divide {0, a}¢ into three sets A} = {x € {0,a}°: |x| <|a|/2}, A, ={x € {0,a}°:

lal/2 < |x| <2|al}, and A3 = {x € {0, a}°: 2|a| < |x|}, and put

.
’ A

When x € Ay, |x> —a?| > 3a?/4 and |x + a| < 3|a|/2, and then

Ilzf daletal ey <om, <s '“').
A

| lxllx? —a?| 2

1 1

X X —a

‘S(dx), j=123.

J

By Lemma 4.1 for any § > o — 1, we can take C > 0 such that
L <Clav1].

When x € A,, |x 4+ a| <3|al and |a|/|x| <2, and then

,2:/ LW E ¢ 4y < GlalM (o6 ®).
A

, |x||x? —a?|
From the condition (C.2)(ii)
L <6Cylav1|'7P.

When x € A3, |x —a| > |x|/2, and then

Ih= / Iy <2 M ).
A

5 1xllx —al
From the condition (C.2)(i)
<27 'Cilav 1]t

Combining the estimates (4.2), (4.3) and (4.4), we have (4.1).

4.2)

4.3)

4.4
g

Lemma 4.3 (i) If & satisfies the conditions (C.2)(i) and (ii), for any 6 € (« vV (2 — 8),2)

there exists C = C(Cy, C3,0) > 0 such that
|®1(&, a, vV=1y)| < exp[C{(Iyl" V1) + (la|” v 1)}],

for yeR and a € suppé.

@ Springer
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Zeros of Airy Function and Relaxation Process 1201

(ii) If& satisfies the conditions (C.1), (C.2)(i) and (ii), for any 6 € (a VvV (2 — ), 2) there
exists C = C(Cy, Cy, Cy,0) > 0 such that

|® 4, a, vV=1y)| <exp[C{UyI" v 1)+ (la’ v 1)}], (4.6)
fory e Rand a € suppé.

Proof We prove (i) of this lemma. From the condition (C.1) and the relation (2.12), (ii) is
easily derived from (i). We first consider the case that a = 0 € supp&. Remind that

z Z
®1(6,0,2) =TI €. 2) =exp[/ flog (1-2) + —}swn]
{0y X X
When 2|z| < |x|, by using the expansion
log(l - E) =_Zl(£)k,
X k \x

we have

2
poe (1= 2)+ 3= 5[
X X X

Then

1
|H1(sm[—2|z|,2|z|]c,z)|sexp{|z|2/ —
|

2
x|>2[z| X

s<dx)}sexp{|z|“Ma<s>“}. )
On the other hand |1 — z/x| < e/l Then

1
T (€ N =221, 21211, 2| SeXp=2|z| —s<dx>] =oxp {202IM1 (6. 202D} (48)

Ixl=2iz) X1

From (4.7) and (4.8), with the condition (C.2)(i) and Lemma 4.1, we see that for any 6 €
(x VvV (2 = B),2) there exists C = C(Cy, 0) > 0 such that

1€, 0, 2) <exp[C{(Iz” v D}], (4.9)

for z € C and a € suppé&.
Next we consider the case that a € supp& and a # 0. By the conditions (C.1) and (C.2)
the equality (2.16) is valid. By (4.9)

T (€, DT 6 N {—a)®, —a)] <exp[C{(zl" v D+ (lal’ v )],
By the condition (C.2)(ii)
(@06 N(0)%, %, 0)] < expflaPMi(z_26 )} < exp|Calal v ],
and |(v—1y/a) g /(a — /—=1y)| < 1. Now we evaluate S(£, a, z).
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1202 M. Katori, H. Tanemura

S<s,a,z)=f (Z_“ —Z_“)adx)
{0,a}° X —da X

(z—a)

—a

+ £({0}) — 2 + g = _iam—a})

1 d+&d0N)z
a

1
=(@z-a) ( ——)S(dx)—
{0.a}¢ X —d X

From Lemma 4.2 and the fact l/a2 < C, and then |2z/a| < 24/C;|z|, we have

+1+&({0) +&E({—a}).

5@, a, 9] = Clz—allav 17 +2/Calz +3 = [yl v D + (lal’ v D
for some C’ > 0. This completes the proof. ]

Proof of Theorem 2.5 Note that € N[—L, L], L > 0 and £ satisfy (C.1) and (C.2) with the
same constants Co, Cy, C;, and indices «, 8. By virtue of Lemma 4.3(ii) we see that there
exists C > 0 such that

|®4(6 N[-L, LLa, V=Tl =exp[cfayv 1 + (al v 17} ],
VL > 0, VYa € supp&, Vy € R. Since for any y € R
¢ N[=L, Lla,V=1y) > Pa,a.v/~1y), L— o0,
we can apply Lebesgue’s convergence theorem to (2.23) and obtain

lim K55 (5, x0 1, y) = K (5, x52, ).

L—o0

Since for any (s, #) € (0, 00)? and any finite interval I C R

sup KT[_L‘L](s,x;t,y) < 00,
x,yel

we can obtain the convergence of generating functions for multitime correlation functions
(2.1); GEN-L B ] — G5[ ] as L — oo. It implies }P’i\m[_L’L] — ]P"f4 as L — oo in the sense
of finite dimensional distributions. Then the proof is completed. O

4.3 Proof of Theorem 2.6

(i) It is clear that £ 4 is an element of %?4. (See the item (1) of Sect. 2.4.) Then by Theo-
N

rem 2.5 (E4(1), IPi{‘) —> (B4, ]P’i(‘) as N — oo in the sense of finite dimensional distri-

butions, where (E 4 (1), IP’i(‘) is the determinantal with the correlation kernel

§A . _ dz _ _
K_A (S’x’t’y)_AEA(da)/ﬂRﬁQ(O,S’x a)q>.A(gA7a!Z)q(t»07Z )7)

—1(s > t)q(t,s,x — y).
Using the equalities (3.6) and (3.7) and the definition (1.31), we have

Ea ) _ dz  pai(s,xla) 1 Aiz) L
K.A (S’x’t’y)_/ﬂ;éjA(da)/\/,_]R«/—_l g(S,x) Z_aAi/(a)g(t’)’)PAl( I,Z|y)
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g, y)

—1(s >1) pai(s — 1, x]y)
g(s, x)
= 8(t.7) Kai(s, x; £, y)
g(s,x)

with (2.26), where we have used (2.18) of Lemma 2.3. By the gauge invariance, Lemma 2.1,
(EA), Pi(‘) = (E.4(1), Py;) in the sense of finite dimensional distributions.
(i) If we use the expression (3.3), (2.26) becomes

Kaoxitn= 3 / = paGsxla)

acAi~1(0)

1 o0
X m/o du Ai(u + 2)Ai(u + a) pai(—t, z|y)

—1(s > ) pai(s — ¢, x|y).
By (3.11), the first term of the RHS equals
> patsxla) / " due P A+ YA+ ).
— (Al (@)? J
aeAi~1(0)
Since s > 0, we can use the expression (1.27) for pai(s, x|a) and the above is written as

Ai(u + ap)Ai(w + ay)
(Ai'(ar))?

f du / dw e 22 Aj(u + y)Ai(w + x) Z

teN

From the completeness (3.13), the above gives
RKai(s, x;2, y) =Kai(t — s, y|x) + R(s, x5 1, y)

with the extended Airy kernel K,; given by (1.37) and

[ee] 0
R(s,x;t,y) = / du/ dw e "2 Aj(u + y)Ai(w + x)
0 —00

Z Ai(u + ap)Ai(w + ay)

(AT (@)

Since for any fixed s,¢ > 0 limg_. |[R(s + 0, x; ¢ + 0, y)| — 0 uniformly on any compact
subset of R2, (1.36) holds in the same sense. Hence we obtain (2.27). This completes the
proof.
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